Private LTE? What are you talking about???

July 18, 2017

ltewifi

Shared Spectrum strategies like the USA Citizens Broadband Radio Service “CBRS” unlock the pent up demand for Private LTE. CBRS reduces the barriers to entry for enterprises that, in the past, had a tough time accessing spectrum for private cellular.

So, why would anyone ever want to build Private LTE? Well, enterprises with wireless requirements for deterministic timing, controlled bandwidth, true mobility, long signal reach and privacy have not been able to meet them. The system architects in these enterprises view Private LTE operating in CBRS as the emergent ideal solution. We have witnessed that progressive enterprise IT architects envision their wireless ecosystem as a balanced diet of enterprise-owned Wi-Fi and LTE that can seamlessly satisfy the present and future needs of business applications.

As we move to the enterprise market from the mobile operator market, how each Private LTE system networks its radios together are front of mind for the enterprise. Enterprises are seeking Private LTE architectures that deploy like Wi-Fi and leverage the enterprise-wide Cat5e cabling and Ethernet/IP transport infrastructure in-place today.

We believe that SpiderCloud E-RAN is uniquely architected for maximum synergy with today’s enterprise networks, and their future directions. The other competing Radio Access Network “RAN” products that an enterprise can acquire to create their own Private LTE instance all have their own unique architectures that will fail the enterprise screening process in many ways.

What questions should responsible architects ask of Private LTE network vendors?

  • Is the network built on standard Ethernet/IP technology? If not, it requires the construction of another parallel infrastructure. Example: the network is proprietary technology or a DAS.
  • Can the network share the existing Ethernet/IP transport network? If not, it requires the construction of another parallel infrastructure. Example: If it uses CPRI over Ethernet. Sharing not possible due to massive traffic load generated on the Ethernet.
  • Is the network approved for connection to any mobile operators? Any IT application that plans to use the macro-cellular (outdoor) network, must be approved for a connection to the desired mobile operator. If the vendor cannot list any of the four Tier-1 USA mobile operators as approved for connection, that’s a problem.
  • Can the network be shared by Private LTE, and one or more mobile operators? CBRS spectrum can support multiple service providers, so make sure the network can!
  • Is network capacity added in common headend or just at the spot where it’s needed? Spot capacity is much lower cost than addition of a base station in the headend.

A network vendor that cannot answer yes to all five simple questions can still build out a Private LTE network for the enterprise.

But, it could mean:

  • Extra construction cost of parallel physical transport
  • Unplanned space and HVAC requirements in MDF/IDFs
  • Lack of agility in handling network expansion
  • Impossible to add connection to a mobile operator(s)
  • Capacity issues that are expensive to remedy

IF YOU ARE NOT IN AN ENTERPRISE IT ROLE, PLEASE SKIP THIS PARAGRAPH! As an enterprise architect in a multi-national, prior to joining SpiderCloud, I urge enterprise IT people who are researching the addition of Private LTE to their wireless ecosystem to get educated, and look before you leap. Cellular is a totally different universe than Wi-Fi, and you have to ask the right questions. Many vendors can make a sale and install a Private LTE system for you that won’t support your future needs. Failure to ask the right questions in researching the solution space, or in an RFP could result in your enterprise painting itself into the corner.

We have authored a comprehensive Private LTE white paper for enterprise IT application, network and telecom architect readers that explores business demands, vertical market applications, a CBRS primer and solution architecture overview. Get it now!

– Art King, SpiderCloud Wireless, Director of Enterprise Services & Technologies

Twitter: @ArtKingg
LinkedIn: https://www.linkedin.com/in/kingart

Visit our Enterprise IT site @ http://SpiderCloud.com/Enterprise


D2E Sales Arrives

June 20, 2017


Copyright

Direct to Enterprise sales of small cell RAN systems, while not new, differ from legacy approaches such as Distributed Antenna Systems, aka DAS. In past posts, we have explored the advantages of both small cell capacity and the corporate swing back to a primary operator. Those two advantages and Direct to Enterprise “D2E” sales channels drove creation of SpiderCloud’s Frequency Agile LTE SCRN-220 Radio Node for the Enterprise RAN “E-RAN” platform.

In many early D2E conversations with enterprise VARs and enterprises, the complaint of the RAN being “locked-in” (the band cannot be altered) to a particular operator was raised. In enterprises that enjoy stable long-term relationships with their operators, lock-in is not an issue. They manage their primary operator via competitive RFP every four to five years to optimize pricing and business terms, but don’t change to a different primary operator. However, it became apparent that many enterprise IT/Telecom leaders we met with wanted an agile RAN for two main reasons:

  • They believe that they can negotiate a better contract with their primary operator because the small cell RAN can be re-configured for a new primary operator instead of replaced. This reduced switching cost enables the enterprise to bargain from a better position.
  • If IT/Procurement decides to switch primary operators, the small cell RAN supporting enterprise mobility will not become a stranded asset due to its inability to be re-configured. This type of finance issue can damage the business case.

SpiderCloud has addressed the need for frequency agility in the United States D2E market with the introduction of the Frequency Agile LTE SCRN-220 Radio Node. This breakthrough Radio Node is an enterprise-grade LTE small cell that can be software configured for the major USA bands supporting the four Tier-1 mobile operators. LTE Bands supported are 2 (1900 PCS), 25 (1900 Plus), 4 (AWS-1), 66 (AWS-3), 12 (700 A) & 13 (700 C) with channel widths of 5, 10, 15 and 20 Mhz.

In summary, SpiderCloud has created the Frequency Agile LTE small cell that satisfies the requirement for that agility to the E-RAN platform. By collaborating with our mobile operators and cutting edge enterprises, we continue to innovate both the E-RAN and the Go-To-Market model in the D2E space. At the end of the day, enterprise IT customers envision their wireless ecosystem as a balanced diet of enterprise-owned Wi-Fi and LTE that seamlessly satisfies the present and future needs of the broad spectrum (pun intended) of subscribers, from IT to non-technical business leaders.

Pro-tip: ask other small cell vendors who have approached you about software reconfiguring their radios for different bands. If they can’t do it, you should look elsewhere.

SCRN-220 Press Release

– Art King, SpiderCloud Wireless, Director of Enterprise Services & Technologies

Twitter: @ArtKingg
Visit our Enterprise IT site @ http://SpiderCloud.com/Enterprise

 


Lions and Tigers and LTE! Oh My!

February 21, 2017

SpiderCloud will be at Mobile World Congress next week. Here is a preview of what we will be discussing with customers, partners and industry analysts.

hola

More LTE Capacity Where You Need It

It is no secret that SpiderCloud believes that one of the best ways to add capacity to mobile networks is to build LTE small cell networks inside buildings. When you move a thousand weekend shoppers to an indoor SpiderCloud network, you not only delight them, you free up the macro network to delight thousands of subscribers outdoors. Simple! Even better, enterprises and buildings want indoor cellular and welcome operators who are willing to provide it with open arms, especially operators that can offer an enterprise IT friendly SpiderCloud system. To prove it, we are heading to Barcelona with a chest full of case studies.

Operators that have experienced the ease of deployment and scalability of our system are now taking it into new applications. They are taking SpiderCloud E-RAN beyond offices to significant public venues like hospitals, hotels, universities and airports. These are venues where just a few years ago, the common wisdom was, “small cells will never satisfy the venue’s requirements.” They are also taking it to small buildings, like retail outlets and betting parlors – buildings that once were considered too small for our products.

And that is not all. In buildings where distributed antenna systems are still required (to support multiple operators, legacy technologies like GSM or CDMA, or public safety), SpiderCloud E-RAN is now being used as an alternative to pico and macro eNBs from Nokia and Ericsson. See recent story in RCR Wireless on how Verizon has asked its five DAS suppliers to partner with SpiderCloud. DAS companies finally have a low-cost, high-capacity, easy to deploy “signal source” that can help them sell more DAS systems to enterprises.

E-RAN – Now Starring Unlicensed Spectrum

We don’t plan to rest on our laurels anytime soon. At MWC 2017, we will be showcasing our new enterprise LTE small cell that aggregates licensed and unlicensed spectrum, using LTE-U and LAA. This new small cell, called SCRN-320, is first to integrate a Wi-Fi chipset that detects Wi-Fi preamble messages and informs Wi-Fi access points about its intent to use the channel. We have developed new SON technology to dynamically sense the Wi-Fi environment throughout the building, and use this information to centrally assign unlicensed channels to small cells. SpiderCloud E-RAN, now starring SCRN-320, may be the first and only system that can co-exist with ad-hoc Wi-Fi networks in large venues like shopping malls and airports, and deliver even more capacity where it is needed.

The Brave New World of Authorized Shared Spectrum

Globally, regulators are looking at ways to make underutilized spectrum available for mobile broadband while protecting the rights of incumbent users. The US FCC is leading the way by making 150 MHz of spectrum in the 3.5 GHz band available for small cell deployment under a shared spectrum strategy called Citizens Broadband Radio Service (CBRS), and we are actively investing in building products for this spectrum.

At MWC2017, we will show a live demo of our CBRS indoor small cells, operating as 3.5 GHz LTE-TDD. We will also explain how SpiderCloud’s Services Node connects to the Spectrum Access System (SAS) as Domain Proxy and use its enhanced SON capabilities to assign CBRS channels, boosting spectrum efficiency and performance. In addition, we will discuss a wide range of use cases for CBRS, from enterprise to outdoor, and single operator to neutral host.

A Pivotal Year Ahead for Small Cells

For small cells, the future’s so bright I gotta wear shades!

After years of hype, enterprise LTE small cells are finally real. Leading operators have integrated them in their networks, and are actively deploying them. New use cases are emerging for small cells. New spectrum is becoming available for them, from unlicensed to authorized shared access. And the industry is inventing new ways to use this spectrum, from LTE-LAA to MulteFire. We are excited, and we will not be shy in saying so.

SPIDERCLOUD @ MWC 2017

Speaking Engagements:

  • Tuesday at 9.30 am: Mike Gallagher, CEO, Interview with Mobile World Live TV
  • Tuesday at 12.15 pm: Art King, Director of Enterprise Services, panelist “Digital Enterprise & Employees” at MWC Conference in Hall 4, Auditorium
  • Tuesday at 3.20 pm: Amit Jain, VP Product Management, panelist “Business Opportunity for Cable Operators and Service Providers” at MWC Press Conference Room #1 in the Media Village. This is part of MulteFire event that runs from 2:00-4:00pm.

Glomo Awards:
SpiderCloud – USA National Rollout is nominated in Best Mobile Infrastructure Award category. Tuesday at 5.00 pm: Awards Ceremony in Hall 4, Auditorium 5. All are welcome to attend regardless of badge status.

If you’re attending MWC, we wish you success and fun in the controlled chaos.

Cheers from SpiderCloud Wireless!

http://spidercloud.com
@spidercloud_inc


LTE in Unlicensed Spectrum

April 4, 2016

placeholders-1Licensed spectrum is limited. Demand for mobile data is not. So what should a mobile operator do?

Of course, network densification via small cells should be the first step. And for small cells to have the biggest impact on the network, they must be deployed in locations where there are lots and lots of subscribers – locations such as indoor public venues. Once operators have committed to this path, they need to take the next step of supplementing their licensed spectrum with unlicensed spectrum.

There are two approaches to using LTE in unlicensed spectrum:

  1. Licensed Assisted Access (LAA) – In this approach, unlicensed spectrum is aggregated with licensed spectrum to boost LTE downlink speeds to up to 450 Mbps. LAA is being standardized by 3GPP in Release 13 (R13).
  2. MulteFire – In this approach, unlicensed spectrum alone is used to run LTE. No licensed spectrum is required. This approach is being developed by the MulteFire Alliance.

 

LTE-in-Unlicensed-1

LTE Licensed Assisted Access (LAA)

LAA is a great way to cost-effectively boost the coverage of LTE small cells. The licensed channel remains the primary carrier. This means that all high-priority traffic, such as voice or video calls, can still go over the licensed band. But when a subscriber wants to stream high-bandwidth video the small cell system can leverage available unlicensed spectrum.

LTE-in-Unlicensed-3

Notice how the decision of which spectrum to use – licensed or unlicensed – rests with the operator controlled LTE-LAA small cell. If the small cell detects that the Wi-Fi channel is extremely congested and unusable it can continue to service the user over licensed spectrum. The scheduler in the small cell manages the user’s quality of experience (QoE). This is a big difference compared to Wi-Fi. When a subscriber connects to a building’s Wi-Fi network the operator is pushed out of the picture. All traffic now goes over the Wi-Fi network if the unlicensed spectrum is congested.

LTE-LAA requires no changes in the LTE core network (EPC). This is really big. In the past, the only way operators could reliably use unlicensed spectrum in public venues was by building their own Wi-Fi networks (so-called “Carrier Wi-Fi”). However, to do this they required new WLAN gateways, management systems, AAA systems, and even more importantly a new organization (people, yes, lots of them) who understood Wi-Fi and could manage it. As a result, very few mobile operators deployed Carrier Wi-Fi. This is not the case with LAA. In fact, LAA is transparent to the core network, and network engineers who know how to manage an LTE network can manage an LTE-LAA network. It is that simple.

Verizon, one of the most technologically advanced operators in the world, is not waiting for R13 to be standardized to benefit from LAA. It has created a pre-R13 approach called LTE-U with its technology partners. Verizon has announced that it will be doing LTE-U trials this year with Qualcomm, Samsung and SpiderCloud Wireless.

MulteFire

MulteFire makes it possible to deploy LTE in unlicensed spectrum only. It builds upon LAA as standardized in 3GPP R13, by (1) removing the need for a licensed channel as anchor, and (2) using unlicensed spectrum for uplink, in addition to downlink.

MulteFire is good for mobile operators. Many mobile operators are deploying licensed spectrum small cells right now. However, doing so is not always possible. There are tens of thousands of buildings where it makes business sense for operators to share small cell infrastructure with each other. Further, many venues insist on shared wireless systems for space and aesthetics. This is where MulteFire comes in, allowing operators to share small cells, without sharing their licensed spectrum, and leverage neutral host providers.

MulteFire will also allow mobile operators to partner with enterprises to deploy mobile connectivity solutions. Over the years, SpiderCloud has met many enterprises that are willing to purchase affordably priced small cell systems that leverage their existing LAN. However, network departments of mobile operators are rarely eager to let enterprise IT own and operate small cells that may, if improperly used, degrade the macro network. By using unlicensed spectrum MulteFire takes that concern away, and makes it easier for able and willing enterprises to invest in LTE small cells.

MulteFire small cell systems do not require any new core network gateways or authentication systems. They can connect to the core network just like normal LTE small cells. Well designed MulteFire small cell systems will connect to multiple core networks without a hitch. They natively use SIM-based authentication. They will honor QCI markings, and any other policies provided by the core network. They can be monetized like any other LTE service. They will offer the same kind of LTE KPIs that network engineers measure on their LTE network.

SpiderCloud’s role in making LTE in unlicensed a success

Since regulations limit transmit power in unlicensed spectrum, this spectrum is ideal for indoor use. At SpiderCloud we are big believers in the importance of adding capacity indoors – especially in high-density indoor locations. When an operator adds a hundred (yes, 100) sectors of capacity inside a building with a few thousand subscribers, it not only offers a great user experience to these subscribers, but also frees up a massive amount of capacity on the macro network for outdoor users. When it comes to capacity build-out, indoor is a 2-for-1 deal! We build licensed spectrum small cells to do this today, and we are really excited about what is possible with unlicensed spectrum.

LTE-in-Unlicensed-2

 

SpiderCloud, and many industry analysts, believe that distributed small cell technology (in contrast to centralized baseband units connected to remote radio heads) is the only viable way to implement any LTE technology that requires co-existence with Wi-Fi, whether it is LTE-U/LAA or MulteFire (supporting document). Each small cell should be able to independently pick the unlicensed channel that it uses, just like Wi-Fi systems do. Further, systems operating in unlicensed spectrum must decide within microseconds if a channel is available, inform other users of their intent to transmit, and then use the channel. Of course, the challenge with using distributed small cells in large high-density venues – where the greatest benefit of MulteFire will be – is small cell coordination. SpiderCloud E-RAN architecture has been solving this problem since 2011, and we look forward to extending the E-RAN architecture to LTE-U/LAA and MulteFire.

SpiderCloud Wireless will be exhibiting at LTE LatAm  6 – 7 April, where Amit Jain will also be a featured speaker. Find out more and view the full agenda: https://latam.lteconference.com/


It’s an earthquake, I tell you!

November 2, 2015

earthquakeWhile it may not be visible to most, the impact of LTE in the unlicensed bands has really penetrated the consciousness of the technical leaders in the mobile operator community. We think LTE in the unlicensed bands has presented mobile operators with an interesting alternative to Carrier Wi-Fi.

This appears to be due to two main forces:

  • Mobile operators want a beautiful and seamless user experience for their subscribers. This desire prevents any Wi-Fi monetization through advertisement insertion or collection of subscriber’s personal information.
  • Mobile operators want to leverage their end-to-end technology investment from the core to the edge of the RAN. This desire is squashed by the parallel technology chain that must be built and supported for Carrier Wi-Fi authentication, operations and traffic management. Further, it requires the creation of parallel operations lifecycle processes to keep it running at desired KPI’s.

LTE in unlicensed bands, whether it is LTE-U or LAA, is a technology designed for small cells. This is due to the typical licensed band RF coverage of a small cell matching up nicely with the coverage of LTE-U/LAA at 5Ghz and creating a blanket dual-carrier effect. The need to build any additional core systems are eliminated as the unlicensed bands are seen by both the network and the UE’s as just another different chunk of spectrum to be aggregated by LTE-A capabilities.

As a leading supplier of LTE small cell systems for medium to large buildings,

we are fielding inbound requests from mobile operators seeking an LTE-U/LAA enabled small cells platform. Why? Because the kinds of indoor environments that SpiderCloud addresses are the ones where carriers are bracing for a capacity crunch! Mobile operators are not facing a capacity crunch at coffee shops and small offices for which they need to supplement their licensed spectrum with unlicensed. They are dealing with a capacity crunch at places where hundreds or thousands of people congregate.

But, Art! What about the “Wi-Fi-mageddon” that we heard may end all communications on earth? So, we are confident the IEEE, 3GPP and LTE-U Forum will hammer out a good solution for co-existence. Not only are there vendors that straddle both technologies, but there are other examples of successful unlicensed spectrum sharing in other bands (ISM comes to mind). Once the co-existence issues are worked out, the discussion will shift to building small cell systems that can exist with ad-hoc Wi-Fi networks, and deliver much-needed mobile capacity, in locations where the need is greatest.

It is useful to note that Carrier Wi-Fi will continue to do a booming business in amarket of terrestrial operators without spectrum. Additionally, as more enterprises move Wi-Fi outside their perimeter (connecting to enterprise data centers via remote access VPN even within a campus), operators that have wireless and terrestrial operating companies have an opportunity to supply turnkey managed wireless services composed of Wi-Fi+Small Cells.

In summary, LTE-U is an earthquake for many business and technical reasons. To learn more, please read David Chambers’ (ThinkSmallCell) latest white paper on the Mobile Operator CTO decision and the Enterprise landscape. We sponsored this work to help you get a deeper dive on the potential decisions, and hope you find it useful.

Cheers,

– Art King, SpiderCloud Wireless, Director of Enterprise Services & Technologies

Twitter: @EMobilityInside
Visit our Enterprise IT site @ http://SpiderCloud.com/EInsider


Can a mid-sized building have more capacity than a small city?

September 29, 2015

A question to mobile operators: You have just acquired the rights to deploy an indoor system inside a large building and are about to deploy 50+ antennas inside the building. Now, would you like to add a full LTE cell to each antenna? That’s right… would you like a complete LTE single-sector base station where you were planning to install just an antenna? What about two LTE base stations where you were planning to install just an antenna?

Adding an LTE (or 3G) cell in the macro network is expensive, very expensive, and difficult as h*$%! So, rather than getting more cell sites, operators try to increase capacity by buying more spectrum (billions), and improving spectral efficiency (even more billions). As frequent readers of this blog know, SpiderCloud offers a way to add a massive amount of capacity indoors – using scalable small cell systems.

One of SpiderCloud’s customers recently asked our system engineering team to estimate the capacity of a SpiderCloud dual-carrier LTE system. We have a rather sophisticated modeling tool that accounts for interference between small cells and macros, generates randomized distribution of users and more. So, for this analysis, we took an 180,000 ft2 4-floor building. Based on the building’s floor plans, 24 radio nodes were sufficient to provide coverage, and this system was capable of delivering more than 2.5 Gbps of throughput, at less than 50% loading!

diagramblog0915

2.5 Gbps in an 180,000 ft2 is a lot of capacity, enough to stream HD movies to 500 Netflix subscribers simultaneously! Not surprising, since this building has 48 LTE cells, equivalent to 16 3-sector macro base stations, sufficient to cover a small city. Though the actual capacity delivered by a SpiderCloud system will depend upon the backhaul connection commissioned by the operator, adding capacity is as easy as provisioning more backhaul, a topic we discussed in a previous post.

SpiderCloud’s approach is very different from big macro base stations vendors, all of whom are still looking for a way to somehow make their macro base station technology (Dots, Lamps, and everything else) applicable to indoor. Macro base station roadmaps are rightfully designed to incrementally squeeze more bps out of existing macro cell site grid, and more $$s out of operators. The whole point is to sell the operator increasingly expensive-to-deploy features like coordinated multipoint and 4×4 MIMO on existing platforms – basically, a gravy train for the big vendors, a sink-hole for their customers.

SpiderCloud’s offers a disruptive alternative – a really easy to deploy system with so much capacity on day one that our customers do not have to buy a capacity upgrade for a very, very long time.

– Art King, SpiderCloud Wireless, Director of Enterprise Services & Technologies
– Amit Jain, Vice President of Marketing & Product Management

Twitter: @EMobilityInside
Visit our Enterprise IT site @ http://SpiderCloud.com/EInsider